Search results for " lithium compounds"
showing 4 items of 4 documents
Computation of conical intersections by using perturbation techniques
2005
Multiconfigurational second-order perturbation theory, both in its single-state multiconfigurational second-order perturbation theory (CASPT2) and multistate (MS-CASPT2) formulations, is used to search for minima on the crossing seams between different potential energy hypersurfaces of electronic states in several molecular systems. The performance of the procedures is tested and discussed, focusing on the problem of the nonorthogonality of the single-state perturbative solutions. In different cases the obtained structures and energy differences are compared with available complete active space self-consistent field and multireference configuration interaction solutions. Calculations on dif…
Multi-line NIR-RGB emission in Nd:LiNbO3 RPE optical waveguides
2007
Simultaneous generation of four spectral emission lines has been achieved in Nd-doped lithium niobate reverse proton exchange optical waveguide cavities. Using a pump at 800 nm, the four lines were found and they are due to lasing at 1.3735 combined with parametric conversion at 0.687, 0.574 and 0.4 mum.
Assessment for the mean value total dressing method: Comparison with coupled cluster including triples methods for BF, NO+, CN+, C2, BeO, NH3, CH2, H…
1997
Limited previous experience with the mean value total dressing (MVTD) method had shown that MVTD energies for closed shell systems are generally better than CCSD(T) ones compared to FCI. The method, previously published as total dressing 2′(td-2′), is based on the single reference intermediate Hamiltonian theory. It is not a CC method but deals in a great part with the same physical effects that CC methods that incorporate amplitudes of triples such as CCSDT or its CCSDT-1n approaches. A number of test calculations comparing to diverse CC methods, as well as FCI and experiment when available, have been performed. The tests concern equilibrium energies in NH3 and CH2, equilibrium energies an…
Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides
2008
A near-field scanning optical microscope (NSOM) is used to perform structural and optical characterization of the surface layer after Zn diffusion in a channel waveguide fabricated on lithium niobate. A theoretical approach has been developed in order to extract refractive index contrast from NSOM optical transmission measurements (illumination configuration). As a result, different solid phases present on the sample surface can be identified, such as ZnO and ZnNb2O6. They appear like submicrometric crystallites aligned along the domain wall direction, whose origin can be ascribed to some strain relaxation mechanism during the annealing process after Zn diffusion. Jose.Canet-Ferrer@uv.es